Faculté des Sciences Appliquées Département de Génie Civil et Hydraulique

Module: Ouvrages Souterrains 2iéme Année Master V.O.A

Date: 15/01/2019 Durée: 1h:30

Examen du 1er semestre

Questions: (10 points)

1- Citer les caractéristiques géométriques d'une discontinuité dans un massif rocheux les ;

2- Expliquer les deux modes d'action du soutènement des tunnels ;

- 3- Selon la classification de l'AFTES, citer les facteurs relatifs au massif rocheux que l'on doit connaître pour déterminer le type de soutènement ;
- 4- Quelles sont les opérations principales effectuées dans un cycle d'abattage à l'explosif des tunnels ?

Exercice: (10 points)

On veut dimensionner le soutènement d'une portion de tunnel routier ayant un rayon R=5 m et une couverture h variable. On supposera que la méthode de convergence-confinement est valable.

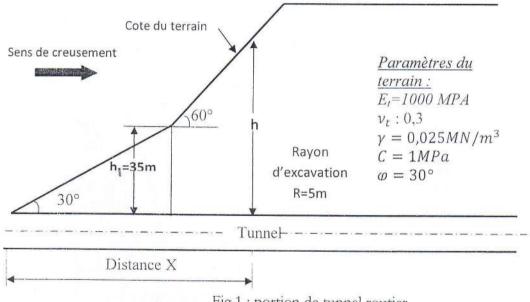


Fig.1: portion de tunnel routier

1- Pour quelle distance x, on a le risque d'instabilité du terrain .

Pour ce qui suit, on prend la hauteur de la couverture h=150 m

2- Tracer la courbe de convergence du terrain sachant que déplacement final $u_{inf} = 2 u_e$

On choisit comme soutènement des cintres métalliques calés dont les caractéristiques sont: section du cintre S = $300 \, \mathrm{cm}^2$, espacement e= $3 \, \mathrm{m}^4$, $\sigma_{a \, \mathrm{max}} = 400 \, \mathrm{MPa}$, $E_a = 200 \, 000 \, \mathrm{MPa}$.

- 3- Tracer la courbe de confinement sachant que le soutènement est placé à 0.5 m de front de taille
- 4- Que peut-on constater?
- 5-A quelle valeur de h pour que l'équilibre entre le terrain et le soutènement choisi coïncide avec le début de l'apparition de la plasticité dans le terrain ?.

Faculté des Sciences Appliquées Département de Génie Civil et Hydraulique

Module: Ouvrages Souterrains

2 Année Master V.O.A

Date: 15/01/2019

Solution de l'examen du 1er semestre

- 1- Les différentes caractéristiques permettant de définir géométriquement 'une discontinuité sont Extension,; espacement: , densité , ouverture et Orientation
- 2-Selon le mode action, on distingue deux types de soutènement

- Soutènement agissant par supportage : l'action de supportage se caractérise par une plus forte résistance relative des éléments de soutènement

- Soutènement par confinement : dans ce mode, le terrain joue un rôle essentiel .le Rôle du soutènement se limite à développer sur les parois de l'excavation une contrainte radiale de confinement permettant au terrain de soutenir lui-même.

3- Selon la classification AFTES, les facteurs relatifs au massif rocheux que l'on doit connaître pour déterminer le type de soutènement sont :

- Les conditions géologiques générales.

- Les conditions hydrogéologiques.

03

Les discontinuités du massif rocheux.

- Les caractéristiques mécaniques du terrain.

- Les contraintes naturelles et la hauteur de couverture de l'ouvrage.

- La déformabilité du massif

4. les opérations principales effectuées dans un cycle d'abattage à l'explosif des tunnels sont :?

- traçage et perforation du plan de tir direction de laquelle on pourra abattre la roche.

- chargement des trous de mines et tir de la volée,

- ventilation et purge de l'excavation,

02/

- évacuation des déblais du front de taille (marinage).

Exercice

1- Distance X

La hauteur h pour laquelle il y'a risque d'instabilité du terrain

$$R_c = 2C \frac{\cos \varphi}{1 - \sin \varphi} = 2x1 \frac{\cos 30}{1 - \sin 30} = 3,46 \text{MPa}$$

$$F = \frac{2\sigma_0}{R_c} = \frac{2 \text{ y. h}}{R_c} > 1$$

$$h > \frac{R_c}{2 \text{ y}} \qquad h > \frac{3,46}{2x0,025} \text{ / h} > 69,2 \text{ m}$$

$$X = \frac{h_1}{tg 30} + \frac{(h - h_1)}{tg 60} = \frac{35}{tg 30} + \frac{(69,2 - 35)}{tg 60} = 80,36 \text{ m}$$

Prend h = 150 m

2-Traçage de la courbe de convergence (fig.1).

-Contrainte initiale $\sigma_0 = 0.025 \times 150 = 3.75 \text{ MPa}$

- pseudo déplacement. $u_e = \frac{(1+v)}{E} R\sigma_0 = \frac{1,3}{1000} \times 5 \times 3,75 = 24,37 \ mm$

- Déplacement finale $u_{inf} = 2u_e = 2 \times 24{,}37 = 48{,}75 \ mm$

- pression à l'apparition de la plasticité

$$K_p = tan^2\left(\frac{\pi}{4} + \frac{\varphi}{2}\right) = 3$$
 , $H = \frac{c}{\tan\varphi} = 1,73$

$$P_{ic} = \frac{2\sigma_0 - H(K_P - 1)}{K_P + 1} = \frac{2 \times 3,75 - 1,73(3 - 1)}{3 + 1} = 1,01MPa$$

Déplacement à l'apparition de plasticité

$$\lambda_{ic} = 1 - \frac{P_{ic}}{\sigma_0} = 1 - \frac{1,01}{3,75} = 0,73$$
 $u_{ic} = \lambda_{ic}u_e = 0,73 \times 24,37 = 17,79 \text{ mm}$

3- Tracer la courbe de confinement (fig.1).

Valeur de $P_{C max}$

$$P_{C max} = \frac{S. \sigma_{a max}}{R. e} = \frac{300 \times 400 \times 10^{-4}}{5 \times 3} = 0.8 MPa$$

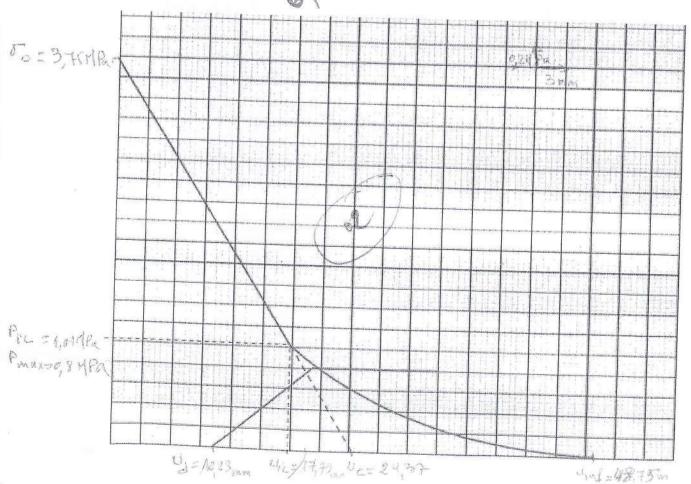
Déplacement à la pose de soutènement

$$\lambda(x) = 0.25 + (0.75)(1 - \left(\frac{0.75R}{0.75R + x}\right)^{2})$$

$$\lambda(0.5) = 0.25 + (0.75)\left(1 - \left(\frac{0.75 \times 5}{0.75 \times 5 + 0.5}\right)^{2}\right) = 0.42$$

$$u_{d} = \lambda_{d}u_{e} = 0.42 \times 24.37 = 10.23\text{mm}$$

$$k_{S} = \frac{E_{a}.S}{e.R} = \frac{2 \times 300 \times 10^{5} \times 10^{-4}}{3 \times 5} = 400 \text{ MPa}$$


$$u_{\text{max}} = \frac{P_{\text{cmax}}}{k_{\text{S}}} \times R + u_{\text{d}} = \frac{0.8 \times 5}{400} = 10 + 10.23 = 20.23\text{mm}$$

4-On peut conclure il ya une rupture (effondrement) de soutènement

5-la valeur de h pour que l'équilibre entre le terrain et le soutènement choisi coïncide avec le début de l'apparition de la plasticité dans le terrain.

$$P_{ic} = \frac{2\sigma_0 - H(K_P - 1)}{K_P + 1} = P_{C \text{ max}} = 1,01 \text{MPa}$$

$$h = \frac{(K_P + 1).P_{C \text{ max}} + H(K_P - 1)}{2\gamma} = 133,2 \text{m}$$

